Modeling a C-47 Propeller Blade

This post is a small digression from the main thread – I will write here about a new method for recreating geometry of historical airplanes.

In one of my previous posts I complained that it is hard to find any reliable drawings of the historical propeller blades from the middle of 20th century. In particular, the geometry of various popular Hamilton Standard propellers from WWII era is unavailable. I have found in a discussion on one of the aviation forums that Hamilton Standard Company still keeps this data as their “business secret” – even their design from 1936!

So far, all we had were the photos ­– but it is really difficult to precisely recreate from a few pictures such a twisted, complex shape as the propeller blade. However, it seems that there is a new hope! Two years ago I encountered on Blender Artists forum an interesting project. The Author of this thread (nick: NRK) used one of the general photo-based 3D scanning methods to obtain a spatial reference of a C-47 aircraft. Although this is not the SBD Dauntless, it seems that its Hamilton Standard propeller blades are similar to the blades used in the earlier Dauntless versions (SBD-1 .. SBD-3). Thus I asked NRK for the part of his 3D scan that contains the propeller. He sent me it within a few weeks (thank you very much, Nick!). Below you can see the picture of this blade and the contents of the 3D scan (Figure 66‑1):

0066-01
Figure 66-1 The 3D scan of the C-47 propeller (courtesy Nick Keeline)

Continue reading Modeling a C-47 Propeller Blade

Modeling Hamilton Standard Hydromatic Propeller

In this post I start finishing the SBD-5 model. It differs in more details from the SBD-3 than the SBD1. One of the most prominent differences is the propeller. I will create it in this post.

In the later Dauntless versions (starting from the SBD-4) Douglas used the new propeller: Hamilton Standard Hydromatic. The SBD-1,-2,-3 used the older constant speed propellers, which used counterweights to oppose the force generated by the oil pressure in the control cylinder. (I created the model of this propeller in this post). The Hydromatic propeller used the oil pressure on both sides of the piston that controlled the pitch. It eliminated the massive counterweights, creating a lighter, smaller, and more precise pitch control unit. Hamilton Standard Hydromatic propellers has been widely used since 40’ (you can still encounter them in the various modern aircraft).

In the Dauntless, these Hydromatic propellers came with slightly modified blades (Figure 55‑1):

0055-01
Figure 55-1 The Hamilton Standard Hydromatic propeller (mounted in the SBD-4)

Continue reading Modeling Hamilton Standard Hydromatic Propeller

Modeling Hamilton Standard Counterweight Propeller

In the previous post I modeled the blade of Hamilton Standard Constant Speed propeller, which was used in the SBD-1, -2 and -3. The Douglas factory mounted on the hub of this propeller a small spinner (Figure 53‑1a):

0053-01
Figure 53-1 The Hamilton Standard Constant Speed propeller (used in the SBD-1, SBD-2 and SBD-3)

It seems that during the service of these aircraft, the ground crew often removed this spinner. It exposed the propeller pitch control mechanism (Figure 53‑1b). There are many photos of the SBD-2 and SBD-3 without spinners, thus I decided that I had also to model this “bare” variant.

Continue reading Modeling Hamilton Standard Counterweight Propeller

Modeling Propeller Blades

The SBD Dauntless used two types of the Hamilton Standard propellers:

  • Hamilton Standard Constant Speed (counterweight propeller) used in the earlier Dauntless versions (SBD-1 … SBD-3). The blades of this propeller had smaller tips (Figure 52‑1a);
  • Hamilton Standard Hydromatic used in the later Dauntless versions (SBD-4 … SBD-6). The blades of this propeller had larger tips (Figure 52‑1b):
0052-01
Figure 52-1 The Hamilton Standard propeller blades, used in the SBD Dauntless

These two blades had different shapes. In this post I will recreate the earlier version, which was used in the SBD-1 .. -3 (Figure 52‑1a). Several posts later I will modify its copy to obtain the later model of the blade, as used in the SBD-4 .. -6 (Figure 52‑1b).

Continue reading Modeling Propeller Blades