Original SBD Dauntless Blueprints: Fuselage Geometry (4)

In the previous post I used ordinals from the newly found fuselage geometry diagram for creating a set of the 3D reference planes:

Figure 118-1 Fuselage data points, grouped into intersecting planes

In this post I will span a smooth subdivision surface between these points. I think that such an interpolation will provide a more accurate reference than the longerons (stiffeners), which I previously shaped in this post (see there Figure 112-07).

Continue reading Original SBD Dauntless Blueprints: Fuselage Geometry (4)

Original SBD Dauntless Blueprints: Fuselage Geometry (3)

This February I found among the SDASM resources a diagram (dwg no 5060837), which describes the geometry of the SBD fuselage. This is the key piece of the information that was missing in the NASM microfilms I used before. Below you can see these lines:

Figure 117-1 SBD fuselage lines

Continue reading Original SBD Dauntless Blueprints: Fuselage Geometry (3)

The Overall Lengths of the Douglas SBD Variants

Since 2015 I have tried to determine the true length of the early SBD Dauntless versions (the SBD-1, -2, and -3). There was something wrong with the source of this information: the original BuAer performance data sheets. You can find there different lengths of the SBD-2 (32’ 2”) and the SBD-3 (32’ 8”), while the differences between these variants cannot explain the reason of such a longer fuselage in the SBD-3. The other sources repeat these figures without any reflection. Fortunately, last month I found in the SDASM resources two interesting drawings of the SBD-1. One of them is a general arrangement diagram, which clearly specifies its overall length (and how it was measured):

Figure 116-1 The overall length in the general arrangement diagram of the SBD-1

Continue reading The Overall Lengths of the Douglas SBD Variants

Original SBD Dauntless Blueprints: Fuselage Geometry (2)

In previous post I started creating 3D reference objects for the SBD fuselage. In this post I will complete this work. I will focus here on the difficult part: the wing fillet. It spanned along more than half of the SBD fuselage length. In this post I am going to prepare reference geometry that describe its shape from bulkhead #4 to bulkhead #13. Unfortunately, in drawings from the NASM microfilms I found just a few contours related to this feature:

0113-01
Figure 113-1 Identified wing fillet contours

Continue reading Original SBD Dauntless Blueprints: Fuselage Geometry (2)

Original SBD Dauntless Blueprints: Fuselage Geometry (1)

As I already mentioned in this post, my microfilm set does not contain the fuselage geometry diagram. (I suppose that it was included in the missing roll C). Thus, this part of my work will be much more difficult, because I even do not have complete set of the bulkhead drawings! Just found a structure assembly drawing (i.e. side and vertical views), skin panels assembly drawing, mid-fuselage bulkheads, and some bulkheads of the tail. In the picture below I marked these undocumented areas of the fuselage in transparent red:

0112-01
Figure 112-1 Fuselage structure: documented and undocumented areas

Douglas blueprints refer to the fuselage bulkheads as “frames”. They are numbered from 1 (the firewall) to 17 (the mounting base for the tail wheel and horizontal stabilizer). Of course, the fuselage assembly drawings provide their positions, measured from the firewall. (You can find them in this assembly drawing of the skin panels). In this post I will refer to fuselage bulkheads using their ordinal numbers, shown in the picture above (for example: “frame #05”).

Continue reading Original SBD Dauntless Blueprints: Fuselage Geometry (1)

Original SBD Dauntless Blueprints: Arrangement Drawing Issues

In some aircraft it is difficult to provide the precise value of overall length. One of them is the SBD Dauntless, because of its easily demountable spinner used in the first three variants (SBD-1…-3). Also the length of the Hamilton Standard Hydromatic spinner hub, used in the later SBD variants, can vary – especially in the restored aircraft. Thus, for verification of model kits or similar purposes I would suggest checking the distance between two easily distinguishable points: from the firewall to the tip of the tail cone. This dimension remains the same in all SBD variants. Preparing the fuselage blueprints for my model, I could determine this distance using the tail cone assembly drawing:

0111-01
Figure 111-1 Using the marked stations to measure distance from the firewall

The key information is provided by the stations marked in this drawing: their names describe distances from the firewall. (You can read them yourself from the high-resolution version of this drawing).

Continue reading Original SBD Dauntless Blueprints: Arrangement Drawing Issues

Original SBD Dauntless Blueprints: Initial Findings

In general, the set of 7 SBD/A-24 reels from NASM contains 3308 unique microfilm frames, belonging to 3022 drawings. On reels “XA” and “XB” you can usually find updated copies of the previous reels (“A”, “B”,.. “F”). However, 350 frames from “XA” and “XB” are unique – most probably this is a part of the missing roll “C”. Duplicates from these “X*” reels are also useful, when a drawing from one of the previous reels is unreadable.

I chose about 1000 frames (mostly assembly drawings) from this microfilm set, and organized them into a tree-like structure as in Figure 108‑1:

0108-01
Figure 108-1 Folder structure for the SBD blueprints

To preserve disk space, I placed in these folders shortcuts to files located in the original directories (These original directories correspond to microfilm reels: “A”, “B”, …, “XB”). I practiced that when I click such a link, it opens the image in Photo Viewer, as if it was the original file.

Continue reading Original SBD Dauntless Blueprints: Initial Findings

A New Finding about the “Long Tail” P-40s

Last month I was busy with my daily business, so in this post I would like to share just single detail, which I encountered in the P-36/YP-37/P-40 documentation.

This finding is related to the “long tail” P-40 variants. In August 1942 Curtiss decided to definitely resolve the directional problems of the “short-nose” P-40s. They extended their tail, adding an additional segment after station 16. It shifted the original “P-36 – like” fin and rudder back by about 20 inches. This modification was introduced to the Allison-powered P-40K-10, and to the Merlin-powered P-40F-20. (These two versions were produced in parallel).

Below you can see how these two tail variants are depicted in typical scale plans:

0105-01
Figure 105-1 The “short” and “long” tail P-40 variant (P-40F), depicted in a classic scale plans

In the picture above I placed drawing of the P-40F-1 (“short tail”, in black) over the P-40F-20 (“long tail”, in red). As you can see, the tail is the only difference between these aircraft. Note the shape of the fuselage in the bottom view. In all scale plans of the long-tail variant that I saw, the width of the fuselage was wider than in the “short tail” version. These differences usually begin at station 12 and continue to the rudder.

Continue reading A New Finding about the “Long Tail” P-40s

Recreating the P-40B Side Contour (2)

As I mentioned in the previous post, I had to check if the “keel” under the wing that I draw according the P-40E blueprints and the “keel” in the P-40B were identical. I was forced to use the P-40E documentation, because the drawings of the earlier P-40 versions (B, C) are extremely rare and often dispersed among less important blueprints (like sketches or design proposals). Thus, to check the assumption that the P-40 “keel” was identical in the “short nose” and “long nose” Hawks, I had to use available photos.

The aircraft picture on most of the photos is deformed by the perspective distortion (which depends on the camera lens length) and barrel distortion (caused by imperfections of the optical system). You can quickly estimate the amount of these (combined) distortions on a side photo of an aircraft. Just look at the seam lines along the fuselage bulkheads. Usually they form “bulges”. If the seam lines on the aircraft nose are “bulged” in opposite direction than similar lines on the tail – then in this image you have a perspective distortion (as in this “Tomahawk” IIA picture, below):

0100-01
Figure 100-1 Typical photo: an example of perspective deformation

Continue reading Recreating the P-40B Side Contour (2)

Recreating the P-40B Side Contour (1)

As I wrote in the previous post, it is impossible to find a complete documentation of the early P-40 variants (so-called “long nose Hawks”: P-40cu, P-40B and P-40C). I collected all what is currently available from the Internet portals: blueprints of their direct predecessor (P-36) and drawings of the later variants (the “short nose” P-40D … P-40N). Using these scanned microfilm frames, archival photos and technical descriptions you can recreate the wings, empennage, tail and mid-fuselage of these aircraft.

I started with the most obvious part of the side view: the fuselage.  Behind the firewall it was basically identical to the P-36, except the tail wheel cover:

0099-01
Figure 99-1 The P-36 fuselage (behind the firewall) with modified tail wheel cover as for the P-40B

Continue reading Recreating the P-40B Side Contour (1)