The R-1820 “Cyclone” Versions

I decided to write a post about the first decade of the R-1820 “Cyclone” development (up to the R-1820-60 version, i.e. 1940). This engine was used in many designs from 1930s, and you can find the references to its various models in many technical specifications. However, sometimes it is difficult to determine how such a referenced version looked like! The early models of the “Cyclone” were produced in small batches, so there is less historical photos. Sometimes even the specialists from the museums are misguided: in one of them, you can find a SBD-3 fitted with the engine and the propeller from the SBD-5. My query, which resulted in this article, started with comparison of the R-1820-60 (used in the SBD-5) and the R-1820-52 (used in the SBD-3 and -4). I have found so many differences, that I started to wonder about the engine used in the pre-war SBD-1 and SBD-2. (They used the earlier “Cyclone” version: R-1820-32). The results presented below may be interesting to the modelers who recreate aircraft from this period (for example – the Curtiss “Hawk”, or the Grumman F3F-2 “Flying Barrel”).

Let’s start from the beginning: below you can see the first model of the R-1820 family, designed in 1931 (Figure 90‑1):

0090-01
Figure 90-1 One of the earliest R-1820s

Frankly speaking, there is only a general resemblance to the later “Cyclone” versions. Note the small crankcase front section and the “archaic” cylinder heads. (They have different shape, and their fins are much shorter and widely spaced: these are indicators of a simpler casting technology). Another strange feature is the exhaust, which could be also mounted in the reversed (i.e. forward) direction. (Some of the aircraft from this era used front exhaust collectors). This engine used large spark plugs, mounted horizontally (in parallel to the centerline). It was rated at 575hp on takeoff, and used in some contemporary designs, like the Curtiss “Hawk” biplane.

Continue reading The R-1820 “Cyclone” Versions

Advertisements

Recreating the Wright R-1820 “Cyclone” (6)

In my previous posts (published in May and June) I focused on the cylinder. I think that it is the most difficult part of every air-cooled engine. Since that time I have made a significant progress, which I will report during nearest three weeks.

Let’s start with the rear section of the crankcase (behind the cylinders). Do you know how difficult is to find a decent photo of this area? The original pictures from the “Cyclone” manual are of moderate quality (Figure 88‑1a):

0088-01
Figure 88-1 R-1820, viewed from the rear

The modern photo (Figure 88‑1b) reveals more details. In general, it looks that the rear part of the crankcase is formed from two cylindrical segments. The intake pipes extend from the first (i.e. forward) of these segments. (There is a centrifugal supercharger inside). The upper part of the last segment contains rectangular air scoop, which also provides the mounting points for the carburetor (Figure 88‑1b). The rear wall of this segment forms the base for various auxiliary aggregates: magnetos, oil pump, starter, etc. As you can see in Figure 88‑1b), aggregates from the R-1820 exposed in the Pima Air Museum differ from the manual photo (Figure 88‑1a). I think that such equipment could be used in the B-17s. On this photo I also finally determined an important feature of the R-1820 geometry: its mounting points. (They are dimensioned on the installation drawings, but I had to find them among all these nuts and bolts that you can see on the crankcase).

Continue reading Recreating the Wright R-1820 “Cyclone” (6)

Recreating the Wright R-1820 “Cyclone” (5)

In this post I will finish the first cylinder of the R-1820 “Cyclone”. It will be the “template” object, which I will clone eight times around the crankcase when I finish the other parts of this engine.

Although in my previous post the cylinder head received the full set of its cooling fins, it still lacks some details. One of them are the reinforcements of the valve covers:

0087-01
Figure 87-1 Asymmetric reinforcements of the valve covers

As you can see, these reinforcements break the symmetry of the left and right valve covers. Both of them resemble a thick plate, but one is oblique, while the other is vertical. They are not the most prominent features of this cylinder head, and it took me some hours to determine their probable shape. Finally I classified them as the secondary features of the covers, which I have to recreate, for the assumed level of details.

Continue reading Recreating the Wright R-1820 “Cyclone” (5)

Recreating the Wright R-1820 “Cyclone” (4)

The fins of the air-cooled cylinder heads are a state-of-art piece of metallurgy (Figure 86‑1):

0086-01
Figure 86-1 Fins of the R-1820 cylinder head

At the first glance, it is hard to believe that they were cast as a single piece. But when you look closer, you will discover that these fins “grow up” from the solid parts of the head as naturally, as the hair from the head (Figure 86‑2):

0086-02
Figure 86-2 Close-up of the fin details

Try to imagine the shape of molds used in the production of these parts, and the challenges faced by their manufactures! (There is an interesting post about this. It describes production of the R-1830 Twin Wasp cylinders). Basically, modern producers of the heads for the air-cooled aircraft engines use the same technology as eighty years ago.

In my model I will recreate these fins in a somewhat simplified form, as a few separate Blender objects. I will also skip some fine details of their shape (for example the small features that I marked in the figure above). Such a simplification conforms the moderate level of details that I assumed for this model. It is always possible to make a more detailed version of this object later.

Continue reading Recreating the Wright R-1820 “Cyclone” (4)

Recreating the Wright R-1820 “Cyclone” (3)

One of the most prominent features of the R-1820 engine cylinders are their rockers. More precisely – their covers, cast as the part of the cylinder head (Figure 85‑1):

0085-01
Figure 85-1 Cylinder valves and their rockers (a cutout)

The R-1820 was a classic four-stroke engine. Its cylinders had two valves: single intake valve, connected to the supercharger via a wide pipe, and single exhaust valve. Movements of these valves were controlled by cams, via pushrods and rocker arms mounted in the cylinder heads. The covers housing these valves and rocker mechanisms were placed on the right and left side of the cylinder head.

Continue reading Recreating the Wright R-1820 “Cyclone” (3)

Recreating the Wright R-1820 “Cyclone” (2)

In this post I will recreate the main and the front sections of the crankcase, and the cylinder basic shape. Let’s start this model by forming the middle section of the crankcase (Figure 84‑1):

0084-01
Figure 84-1 Central section of the R-1820 crankcase

This section is always obscured by the cylinders, so you cannot see it clearly on any photo. That’s why I used here the original drawing from the manual. Generally, this barrel-like shape contains nine cylinder bases. It is formed by two steel castings, bolted to each other. (These bolts are hidden inside the crankcase, between the cylinder openings).

Continue reading Recreating the Wright R-1820 “Cyclone” (2)

Recreating the Wright R-1820 “Cyclone” (1)

The engine is the heart of every powered aircraft. In the case of the SBD it was the Wright R-1820 “Cyclone 9” (the “G“ model). In fact, this engine was one of the “workhorses” of the 1930s: designed in 1931, it was used in many aircraft, especially in the legendary DC-3. “Cyclone” was a reliable, fuel-saving unit for the Navy basic scout type. (Remember that the “Dauntless” was not only the bomber: it was also a scout airplane). In general, the R-1820 is a classic nine-cylinder, single-row radial engine (Figure 83‑1):

0083-01
Figure 83-1 The Wright R-1820 “Cyclone”, mounted on the SBD-5 airframe

The R-1820 G had been produced for over two decades, not only by the Curtiss-Wright, but also (under license) by Lycoming, Pratt & Whitney Canada, and Studebaker Corporation. Thus various less important details of this engine “evolved” during this period. In this post I would like to highlight some of these differences. I will focus on the forward part of this engine, because at this moment I am going to create a simpler model of the “Cyclone”, intended for the general, “outdoor” scenes. Inside the closed NACA cowling, you can see only its forward part. (Thanks to the air deflectors, placed between the cylinders – see Figure 83‑1). In such an arrangement, the visible elements are: the front section of the crankcase, cylinders, ignition harness, and the variable-pitch propeller governor. While the front section of the R-1820 crankcase remained practically unchanged in all versions, and the governor depends on the propeller model, I could focus on the cylinders and their ignition harness.

Identification of the version differences is the basic step, because otherwise you can build a model of non-existing object that incorporates features from different engine variants.

Continue reading Recreating the Wright R-1820 “Cyclone” (1)

Engine Cowling Details

In this post I will finish the engine cowling of the Dauntless (of course, for this stage of the project). In the previous posts I formed its outer panels. In the case of the air-cooled radial engines like the one used in the SBD, there is always another, inner panel: the central part of the cowling. It is located behind the cylinders and exhaust stacks. In the classic arrangement of the NACA cowling it is nearly invisible. In the SBD-1..-4 you could see only its outer rim. That’s why I had to use all available pictures of the Dauntless engine maintenance or the wrecks, to learn about its general shape (Figure 46‑1):

0046-01
Figure 46-1 The central cowling panel, behind the engine

This panel had two variants. The first one (let’s call it “flat”) is visible on the photo above. It was used in the SBD-1..-4. In the SBD-5 and -6 the engine was shifted forward by 4”, so the central panel became a little bit longer (“deeper”).

Continue reading Engine Cowling Details

Shaping the NACA Cowling Panels

In this post I will shape panels of the Dauntless NACA cowling. Working on the scale plans a couple months ago I came to the conclusion that the basic shape of this cowling was the same in all the SBD versions (see Figure 4.6 in this post). You can find the differences in their ‘ornaments’, like the sizes and locations of the carburetor air intake, or the number of their cowling flaps. Thus I used the high-resolution, long-lens photo of the SBD-5 (described in the previous post), to determine the ultimate shape of this cowling, and the split lines of its panels (Figure 43‑1a):

0043-01
Figure 43-1 Splitting the NACA cowling into individual panels

Basically, the SBD Dauntless NACA cowling was split into a single upper panel and two symmetric side panels. I started by copying corresponding part of the reference shape (created in this post) into the single side panel (Figure 43‑1b). The subdivision surface of such a 120⁰ mesh ‘arc’ is somewhat flat at both ends. Thus I had to tweak a little mesh edges in these areas, fitting them to the reference contour.

Continue reading Shaping the NACA Cowling Panels

Initial Approximation of the Engine Cowling (1)

SBD Dauntless had a radial engine hidden under typical NACA cowling. The Douglas designers placed its carburetor air intake on the top of this cowling, and the two Browning M2 guns behind it. In the result, the upper part of the SBD fuselage, up to the pilot’s windscreen, had a quite complex shape (Figure 40‑1):

0040-01
Figure 40-1 Complex shape of the upper cowlings

I am sure that I will tweak this shape multiple times before I reach the most probable compromise between all the reference photos I have. It will be much easier to do it by modifying a simple mesh instead of the complex topologies of the final cowling. Thus I decided to create first a simpler version of this fuselage section and adjust it to the all of the available photos. I will describe this process in this and the next post. Once this shape “stabilizes”, I will use it as the 3D reference in forming the ultimate cowling. Because I am going to recreate all the internal details of the engine compartment, I will create each cowling panel as a separate object.

Continue reading Initial Approximation of the Engine Cowling (1)