Recreating the Wright R-1820 “Cyclone” (2)

In this post I will recreate the main and the front sections of the crankcase, and the cylinder basic shape. Let’s start this model by forming the middle section of the crankcase (Figure 84‑1):

Figure 84-1 Central section of the R-1820 crankcase

This section is always obscured by the cylinders, so you cannot see it clearly on any photo. That’s why I used here the original drawing from the manual. Generally, this barrel-like shape contains nine cylinder bases. It is formed by two steel castings, bolted to each other. (These bolts are hidden inside the crankcase, between the cylinder openings).

Continue reading Recreating the Wright R-1820 “Cyclone” (2)


Recreating the Wright R-1820 “Cyclone” (1)

The engine is the heart of every powered aircraft. In the case of the SBD it was the Wright R-1820 “Cyclone 9” (the “G“ model). In fact, this engine was one of the “workhorses” of the 1930s: designed in 1931, it was used in many aircraft, especially in the legendary DC-3. “Cyclone” was a reliable, fuel-saving unit for the Navy basic scout type. (Remember that the “Dauntless” was not only the bomber: it was also a scout airplane). In general, the R-1820 is a classic nine-cylinder, single-row radial engine (Figure 83‑1):

Figure 83-1 The Wright R-1820 “Cyclone”, mounted on the SBD-5 airframe

The R-1820 G had been produced for over two decades, not only by the Curtiss-Wright, but also (under license) by Lycoming, Pratt & Whitney Canada, and Studebaker Corporation. Thus various less important details of this engine “evolved” during this period. In this post I would like to highlight some of these differences. I will focus on the forward part of this engine, because at this moment I am going to create a simpler model of the “Cyclone”, intended for the general, “outdoor” scenes. Inside the closed NACA cowling, you can see only its forward part. (Thanks to the air deflectors, placed between the cylinders – see Figure 83‑1). In such an arrangement, the visible elements are: the front section of the crankcase, cylinders, ignition harness, and the variable-pitch propeller governor. While the front section of the R-1820 crankcase remained practically unchanged in all versions, and the governor depends on the propeller model, I could focus on the cylinders and their ignition harness.

Identification of the version differences is the basic step, because otherwise you can build a model of non-existing object that incorporates features from different engine variants.

Continue reading Recreating the Wright R-1820 “Cyclone” (1)